Tézis 1. – a minap elmentem egy előadásra. nem igaz. ma. nem igaz. beszélgetésre. egy frissen megjelent esszékötetről. az egyik fő téma a bölcsészettudományok és a többi. hasznos tudomány viszonya. hogy milyen termékeny lehet a kölcsönhatás. és mennyire semmire sem való a bölcsészet. beleeértve és főleg az irodalomtudományt. ez idáig elég közhelyes. valljuk be. ezt mindenki tudta eddig is. de azért mentem el. és azért keltette fel az érdeklődésem egyáltalán. mert keresem a konklúziót. mi következik ebből az irodalomra nézve. az írásra. hát igen. keresünk új fogalmakat. mert nem hiszünk már semmiben. se hagyományban. se szavakban. se metaforákban. pontosabban. a fogalmaink talán még megvannak. a szavakkal van a baj. a szavakkal van a baj?
Tézis 2. – van egy könyvem. amit rongyosra olvastam. ez sem igaz. van az egyik. mint mindenkinek. mindenkinek van egy ilyen egyik rongyosra olvasott. chaim potok. a nevem asher lev. nem érdekes a sztori. ennyi év után pláne. évente szoktam. szigorúan nyári szünetben. amikor a gyerekek mamánál. hogy… de ezt úgyis tudja mindenki. hogy kell alkalom. lehetőség. levegőt venni. végiggondolni egy gondolatot. végre. és ne kelljen közben mindig letörölni. megtörölni. feltörölni. és ki. elkanyarodtam. vissza. szóval. a leglényeg. a bizonyos könyvé. rúgjuk fel a hagyományt. szakadjunk el. és bele. és meg. ha ki akarjuk mondani. ami igazán igaz. a new york-i haszid közösségből kinövő festőművész témája egyetlen hiteles megfogalmazását a közösség számára legprovokatívabb keresztény szimbólumban: a keresztre feszítésben találja meg. és valósítja meg. sejthető következményekkel. átlépte a határokat. átlépte a határait.
Konklúzió – google keresés: párhuzamosság “A háromdimenziós euklideszi térben teljesülnek a következők: Két egyenes kitérő, ha nincsenek egy síkban. Egyenes és sík párhuzamos, ha nem metszik egymást, vagy a sík tartalmazza az egyenest. Két sík párhuzamos, ha nem metszik egymást, vagy egybeesnek. Magasabb dimenziós terekben más alterek párhuzamossága is értelmezve van. A hiperbolikus, az affin és a projektív geometriában is hasonlók teljesülnek. Vektorterekben két egyenes párhuzamos, ha irányvektoraik lineárisan összefüggnek, ahol is az egyenesek értelmezhetők az egydimenziós alterek mellékosztályaiként.”
valamint
“A párhuzamos univerzumok kereséséről szól Hawking utolsó tanulmánya.” – ez tök jó. ő is élete végéig kereste. mindenképp megnyugtató. (és most képzeljen ide a kedves olvasó – amennyiben persze kitartott idáig… igen? gratulálok – egy halványt mosolyt. mondjuk olyat. mint amilyet én – én: szerző – produkáltam a tablófényképezéskor. tanárnő. mosolyogjon. mosolygok. mondom. érzem. hogy mosolygok. tanárnő. ez így nem fog menni. mosolyogjon. lesz szíves nem szabotálni. menni fog ez. mosolygok! és gondoltam valami nem kimondhatót.)
igazán halvány emlékeim szerint a párhuzamosok. azok. amik csak a végtelenben találkoznak. de csak bizonyos matematikai iskolák szerint.ebbe most már ne bonyolódjunk bele. ez nem fog menni. pedig olyan szépen. és hosszasan elgondoltuk. és még többes számba is átmentünk. mert úgy hatásosabb. vagy nem. vagy akármi. a cél mindenképp. az volt. a következetes. egzakt. tudományos. meggondolt. és megindokolt. mert van. amikor nem lehet. lírázni. amikor ragaszkodni kell. konvencióhoz. kezd ellentmondásos lenni a szöveg. enfarkába harapó kígyó. amikor elszáll a konklúzió. (amúgy van egy külön elméletem az irodalom és a matematika nyelvének lényegi összefüggéséről. de ezt most inkább nem. majd máskor. ha lesz még olvasó. aki kitart.)
szóval… van. amikor kell egy másik nyelv. egy másik szókészlet.
a káoszra.
a rendre.
az emberre.
az istenre.
az istentelenre.
az egymásra rímelő sorokra.
a párhuzamosokra.
a vagyokra és a vágyakra.
a lehetséges megoldásokra.
a sejtszinten dobbanásra. (ezt nem lehet ennél igazabbul. tény. jelenség. ez maga az ezvan.)
igen. arra nincs szó.
mint természetes. de nem hasznos.
csak szép. önmagáért létező.
valóságosságra.
a konklúzió. tehát. maga az ezvan.
ld. énekek éneke
Legutóbbi módosítás: 2019.09.10. @ 15:05 :: Más Vali